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Insightful interdisciplinary collaboration is essential to the principled governance of technology. When such eforts address the
interaction between computation and society, they often focus on modeling, the process by which computer scientists formally
deine problems in order to enable algorithmic solutions. But modeling is a multifaceted and inherently imperfect process.
Especially in interdisciplinary work, it often receives uneven scrutiny because of the practical challenges of communicating
complex technical details to non-experts. We argue that there is an underappreciated if loose family of obscure and opaque
technical caveats, choices, and qualiiers that the social efects of computing can depend just as much on as far more heavily
scrutinized modeling choices. These artifacts are often used by researchers to paper over the incomplete theoretical foundations
of computing or to burden shift responsibility for the impact of normative design decisions. Further, their nuanced technical
nature often complicates thorough sociotechnical scrutiny of the discretionary decisions made to manage them. We describe
three speciic classes of such objects: heuristic models, assumptions, and parameters. We raise six reasons these objects may
be hazardous to comprehensive analysis of computing and argue they deserve deliberate consideration as researchers explain
scientiic work.
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1 Introduction

Computing is integral to modern society. Its complex, automated, and often autonomous nature, however, makes
its responsible use a signiicant social challenge. In particular, the principled governance of computing sufers from
a problem of collective action. Those with the deepest technical understanding of computation, such as scientists
and engineers, are rarely those best equipped ś let alone authorized to ś govern its use, compared to policymakers,
judges, lawyers, regulators, and a democratic society at large. Perhaps inevitably then, interdisciplinary eforts
to govern technology have a tendency to work of of shared knowledge bases that emphasize informal, often
analogical, reasoning over precise mathematical reasoning. Interdisciplinary research aimed at the governance of
algorithmic markets is, for instance, almost certain to appeal to or assume an intuitive understanding of economic
rationality, far more than it is likely to delve into a rigorous mathematical exposition invoking the theories of
calculus, probability, and computational complexity. The hope is, in some sense, that an informal understanding
guided by analogy can be enough ś and in many cases that belief may very well hold. But it will not always.
In this paper, we argue there is an underappreciated family of often obscure and opaque formalisms ś heuristic

models, assumptions, and parameters, all in common use throughout computer science ś that form an outsized
hazard to efective interdisciplinary collaboration intended to support the principled governance of computing.
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Consider the case of diferential privacy (DP) [58, 59] as used by the United States Census Bureau for its 2020
decennial census. By statute, the Census Bureau is prevented from producing ‘any publication whereby the
data furnished by any particular establishment or individual ... can be identiied’ [3]. Despite this restriction,
the Census Bureau produces numerous reports that are widely used by legislators, regulators, policymakers,
and researchers at all levels both within and without government [79, 91]. Computer scientists have shown
that robust anonymization of data is an extraordinarily diicult problem [51, 110, 115], with years of intensive
research to improve upon heuristics culminating in diferential privacy as the irst theoretically sound approach.
After a thorough review, the Census Bureau chose to adopt it for the 2020 census in order to provide the strongest
possible assurance of compliance with their privacy mandate [6, 28, 69, 85]. This decision was and remains
contentious, spurring both litigation [1, 2] and extensive debate [6, 10, 30, 31, 40, 69, 79, 83, 91, 127, 129, 146].
That broader debate invoked many nuanced scientiic and social principles ś individual privacy and the social
compact, the utility vs. privacy tradeof inherent in population statistics, federalism, bureaucratic governance
and administrative law, database reconstruction and calibrated noise ś with varying degrees of mathematical
sophistication. But the defense of deploying diferential privacy for disclosure avoidance ultimately rested in
large part on an otherwise unassuming real number: 19.61.

Diferential privacy is a framework for calibrating a tradeof between the utility of statistics and the privacy of
their underlying data. At one extreme, it permits the choice of maximum utility with no privacy and, at the other,
perfect privacy with no utility. In practice, selection of a real-valued parameter � concretely ixes the privacy
loss permitted, and with it the corresponding loss in accuracy, to somewhere between the two extremes. The
Census Bureau set global � = 19.61 [30, 31]. So while some dispute focused on the distinctive method by which
DP protects privacy or on procedural delays its use may have caused, many critiques simply advanced the claim
that the US Census Bureau had unreasonably accepted a signiicant loss of accuracy for, at best, an insuicient
gain in privacy. The Census Bureau and diferential privacy researchers put forth compelling responses to these
criticisms. But it was here that the oft-invoked (e.g., [57, 59, 146]) analogical explanation of diferential privacy ś
that it enables paying with privacy for utility out of a socially-determined budget ś reached its limit. In practice,
the most vocal criticisms were levelled not at the idea of modeling statistical privacy in terms of adversarial
reconstruction of an individual’s data nor at the normative design decision to pay for social utility with individual
privacy. Rather, the criticisms targeted the allegedly exorbitant cost accepted by the Census Bureau. And while
the need to select an � can quite naturally be conveyed to a non-technical audience [146], the impact of any
particular choice cannot ś yet it was from the implications of ixing the speciic choice of � = 19.61 that much of
the resulting controversy lowed. For analysis of the practical impact of its use with the 2020 census, an intuitive
understanding of diferential privacy is not necessarily enough.

The example of the � of diferential privacy is far from unique within computer-scientiic research. Computing
is rife with small and unintuitive technical details that nonetheless have an outsized impact on the societal efects
of a technology. And while efective governance is ultimately produced and managed by lawyers, regulators,
policymakers, and other practitioners that are experts in governance, they most often lack esoteric mathematical
and computer-scientiic knowledge. This limitation often also extends as well to the legal, policy, and social-
science researchers whose indings support efective policy- and rule-making. On the other hand, computer
scientists and engineers themselves rarely possess the legal and policy sophistication to propose feasible and
comprehensive sociotechnical mechanisms of governance. As a consequence, their work often falls into the trap
of solutionism [132]. The need for both technical and societal expertise has motivated both the deeper integration
of computer scientists into the law-making and policy-making processes and the development of an immense
body of interdisciplinary research reaching across almost every subield of computer science: cryptography and
privacy, artiicial intelligence and machine learning, human-computing interaction, program veriication and
analysis, computer graphics, and more. This research has dual but complementary goals. At the least it aims to
document and communicate the particular nature and peculiar efects of computing in order to efect change
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through governance by law and policy. When possible, it further aims to design bespoke algorithmic methods
with an eye towards technical mitigations or ‘solutions’ for societal problems ś whether those problems originate
within or without computing itself.

In this paper, we argue that some of those peculiar technical details present often underappreciated hazards
to both goals of work at the intersection of computing and society. We classify three technically distinct but
philosophically similar objects used within computer science:

i proofs that hold only over heuristic models;
ii technical assumptions of believed rather than proven truth; and
iii numerical parameters that encode complex tradeofs through often deceptively simple choices.

Cumulatively, we deem these HMAPs. Each is the product of norms developed by computer scientists in order to
represent complex and messy social and physical systems within the sterile mathematical language required of
algorithm design and analysis. These often unassuming mathematical objects can greatly inluence ś or even
entirely deine ś the real-world consequences of deploying a technology, while simultaneously being poorly
understood by technical experts and obscure and opaque to practitioners who must govern their use in order to
promote the social interest and welfare.
Further, we contend that HMAPs often receive insuicient attention in interdisciplinary discussion, which

may undercut legal, regulatory, and policymaking processes governing computing. We therefore aim to motivate
further recognition and discussion about HMAPs in law- and policy-oriented work produced by technical
researchers. Through examples drawn from cryptography, privacy, and machine learning in particular, we argue
such work may be essential to reducing friction within the collective action of technologists and practitioners
working towards efective governance of computing, as well as to navigating the particular hazards to those
eforts that HMAPs present.

The Nature of HMAPs. As with any science, computer-science researchers and technical engineers working
on ‘practical’ problems must build a formal model of a social or physical process. This model is inherently lossy ś
as the adage goes, ‘all models are wrong, but some are useful’ [24, 136]. But computer science has a particular
predilection for relying on heuristic models used not because the world is messy, but because the mathematics
are. The compromise inherent in heuristic models can limit the applicability of algorithmic results based on
them for reasons not immediately visible to anyone without expertise in the speciic mathematical methods.
Technical assumptions allow computer scientists to assert and prove algorithmic behaviors that are believed true
but not known to be. They are the shifting foundations of many computer-science results, and a inding of their
incompleteness or invalidity can rapidly shift a ield ś an acute threat that hangs continually over cryptography
in particular, because the invalidity of a hardness assumption can undermine security arguments reliant upon it,
in some cases leading to practical attacks. Numerical parameters allow for the oloading of complex questions of
social choice and technical eicacy onto opaque valuations that often receive less attention than the algorithmic
methods whose efects rely on their careful choice.

The choice of � for DP is far from unique in how arcane technical detail can drive social consequences. These
details often require signiicant technical expertise to understand ś or even to discern the relevancy of in the irst
place. As another example, in cryptography it is careful problem modeling that motivates security guarantees;
captures participants, adversarial intent, and computational capacity; and justiies the overall conclusion that
a construction is secure. Any such conclusion, however, may be conditioned on the use of adequate key sizes
and the assumed hardness of a computational problem [73, 90]. Both of these qualiiers have been exploited
to diminish the practical security of theoretically secure systems. Export-grade cryptography was weakened
through legally mandated short key lengths [5, 50], while (almost certainly) malicious parameter generation
circumvented the security arguments justifying the DUAL_EC_DRBG pseudorandom-number generator [27, 78].
In machine learning, problem modeling legitimizes a data universe as adequately representing a social or physical
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system so that training and validating against it will be useful in deployment [111]. It also justiies particular
choices of hypothesis class and loss function, and the systemic interpretation of computational outputs. It shapes
understanding and implementation of desirable qualities such as fairness or robustness, and it gives conidence
that a resulting trained model will be accurate when deployed [108, 132, 134]. However, particular deinitions of
fairness can have social impact dependent upon a choice of parameters intended to encode a desired equity, in a
manner reminiscent of, or even directly descended from, the � of diferential privacy [34, 56]. In this work, we
frequently proceed by example, primarily drawn from origins in cryptography and privacy or artiicial intelligence
and machine learning.

The Importance of HMAPs. Debates over the societal and legal governance of technology almost inevitably
focus on questions of modeling: how scientists and engineers represent social or physical problems in order
to formulate technical solutions. But modeling in an involved and intricate process, and because the more
ine-grained a model is the more complex it may be to use and reason about, there is a natural inclination among
scientists to mitigate complexity. Computer scientists, in particular, rely upon a proven suite of techniques for
reducing normative choices and tradeofs down to parameters and for conining caveats and qualiiers ś often
tied back to the incomplete complexity-theoretic foundations of the ield ś to careful reliance upon imperfect
models and assumptions. When computer scientists aim only towards traditional goals of algorithmic correctness
and eiciency, these methods are mostly of just scientiic interest. However, for much of the research community,
correct and eicient is an insuicient standard, and computation must further be, e.g., accountable, fair, just,
explainable, interpretable, moral, legal, or politically sensible [4, 5, 13, 36, 53, 97, 101, 104, 108, 112, 115, 125, 126,
130, 132, 145]. In light of such broader norms, this otherwise innocuous suite of techniques presents a unique
challenge for interdisciplinary research at the intersection of computer science with law, policy, and society,
let alone for the actual practice of technological governance. As our examples demonstrate, parameters and
assumptions enable computations to have consequences that arise not just from how a problem is modeled or the
basic mechanism of a proposed solution, but rather from the obscure and opaque technical details of particular
algorithmic techniques and their theory. For DP, the basic principle of trading some statistical accuracy to protect
individual privacy can be approachable and intuitive for non-technical audiences [146]. Yet, the implications to
American society and governance of the particular tradeof encoded by � = 19.61 have proven far more muddied
and contentious.

The ongoing groundswell of interest ś both purely technical and interdisciplinary ś in the interaction between
computation and society motivates a critical look at what form these techniques take, and the implications
they can carry for the understanding and governance of computing by practitioners, especially those without
deep technical expertise in computer science. Although technical expertise may not be essential to diagnose
the ramiications of technology, it is required in order to locate their root technical causes or when proposing
technically involved mechanisms for ex ante mitigation of or ex post accountability for computing harms. Any
‘solution’ that cannot be well deined or is uncomputable, intractable, or inconsistent with the algorithmic
methods used is simply a non-starter. The obscurity of HMAPs make them potentially more insidious hurdles. As
noted, a knowledgeable and engaged policy debate on the cost of DP for census anonymity is much more diicult
than one on its use, because the algorithmic technique of DP itself is much more approachable than the choice of
� .

The barriers to understanding that HMAPs create are just one example of an essential and widely discussed
diiculty with bridging gaps in knowledge and methods in interdisciplinary work between the sciences and other
ields, perhaps most famously expounded on by C.P. Snow in his iconic Two Cultures lecture and book [137] and
continually revisited since by computer, physical, and social scientists, as well as law and policy scholars [14,
108, 131]. Not only the diiculty but also the urgency of efective communication of the technical underpinnings
of computing harms is itself far from novel for the intersection of science and society. It often arises when
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foundational technologies ‘escape the laboratory’ and begin to reshape society ś as occurred, e.g., when physicists
greatly inluenced public policy and morality in the atomic age [128].
More speciically, the nature and implications of HMAPs touch on common themes in the philosophy of

science [67], to the extent that similar concerns have been raised about even some of the same objects within
domains adjacent to computing, such as the role of parameters in statistics [24, 45] or assumptions in econom-
ics [138]. One natural direction our exposition could therefore take would be to engage with this rich vein of
existing theory as part of a comparative analysis linking these formalisms across domains. Although such a
work would, we think, be an excellent contribution to the literature, we take a diferent and more prosaic tact to
focus on the particular way in which HMAPs afect the practice of computing governance and research. But it is
important to stress that our analysis is novel only in that speciic focus and in our speciic analyses that tread
on distinct features of computation or on particular algorithmic models or constructions. There is, for certain,
much to be gained in computer scientists’ learning from the outcomes of hard-fought battles in related domains
rather than relearning every lesson through bloody experience ś especially as subields like cryptography and
machine learning stumble into similar moral and practical questions previously faced by, e.g., environmental and
atomic scientists. This is a particularly acute need for computing, given the way in which the products of the
ield continue to permeate throughout the sciences, humanities, civil society, and commerce, creating a broad
spectrum of applications which must be governed.

Classifying HMAPs. Our deinition of HMAPs is not intended to be an exhaustive taxonomy of the obscure
formalisms that can have outsized impact on the societal efects of computing. Such an exhaustive analysis could
very well be of considerable value to the responsible computing community. However, undertaking such an
extensive project within this paper would distract from our other goals of outlining the particular hazards such
objects present and discussing ways in which the technical research community can work to better explain
and motivate their importance and impact. In other words, our focus is more on developing a framework for
recognizing and characterizing HMAPs that could then be applied more broadly, rather than on adding as many
letters as we can to one particular acronym. Although this work deprioritizes complete classiication, there are
some distinguishing attributes of HMAPs (and other formalisms that are used in a similar way) that can be
useful to keep in mind when considering their nature and implications. We will later link one useful attribute
classiication into our discussion of how the technical community can best communicate the nature of HMAPs,
but, because it may be generally useful, we briely highlight it here irst.

HMAPs are used to formalize various social and physical processes and normative design decisions, and their
selection and justiication can stem from numerous diferent roots in the modeling process. For instance, the � in
diferential privacy models a social concept (the individual privacy vs. social utility tradeof) in a manner where
the eicacy of any given selection can be analyzed empirically ś as demonstrated by the whirling debate over its
Census deployment. In general, HMAPs naturally it into ive diferent categories that capture what they model
and how their use can be checked, addressed, or falsiied: (i) formal, (ii) formal-empirical, (iii) physical (which are
inherently empirical), (iv) social-empirical (like the � of diferential privacy), and (v) social. We will often allude to
this classiication or explicitly state which category a particular HMAP its into, and the distinctions among them
often impact the nature of an HMAP and which hazards it presents.

Outline. In ğ2 we detail these classes of objects and discuss their nature and their importance to the thorough
analysis of computing and its harms. In ğ3 we raise six hazards that make HMAPs uniquely treacherous for
interdisciplinary analysis, demonstrated in ğ4 through more detailed discussions of post-quantum cryptography
standardization, machine-learning hyperparameters, and, most extensively, diferential privacy. We then consider
how computer scientists might emphasize the nature and importance of HMAPs in a manner accessible to
practitioners, the Systematization of Knowledge for Practitioners (SoKfP), in ğ5, before briely concluding in ğ6.
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2 Heuristic Models, Assumptions, Parameters, and their Implications

It is a basic principle that the societal impact of a technology bears the imprint of the scientiic process that
developed it, and computing is certainly no diferent [104, 108, 125, 132]. We are interested in artifacts that are the
products of a particular pattern common in computer-science research: A social or physical problem is formally
modeled, and an algorithm or protocol is developed that the researcher is just about certain solves it. It may be
that the algorithm works for a slightly diferent model, not equivalent to the original but ‘close enough’ to seem
justiiable. It may instead be that the algorithm seems to work and certainly does so if certain assumptions ś
which are well deined on their own terms, independent of any particular application ś hold. Or, it may be that
the algorithm produces an efect that could be desirable, but only if attuned to the circumstances of its use that
are as yet unknown or are inherently subjective. So, the algorithm designer makes that efect adjustable and
places the burden of selection onto the implementer, just as how the US Census Bureau was forced to determine
an appropriate � to apply diferential privacy to disclosure avoidance. In any case, the algorithm or protocol
is presented as a solution to the modeled problem, and the resultant artifact ś respectively, a heuristic model,
assumption, or parameter ś is left as a consequential detail.

Heuristic Models. Briely, in this context by a model we mean the system used to reason about the correctness
of an algorithm or program. Most computational ields have, at least in some weak sense, a ‘standard model’ that
forms a baseline for analysis. For example, the standard model of cryptography considers an attacker with a
classical (i.e., non-quantum) computer constrained only by limited time and computational resources.
There are two diferent forms heuristic models take, depending on whether our interest lies in mathematical

or computational reasoning.1 For the former, a researcher is unable to prove some fact about an algorithm �

directly in the standard modelM[�]. So, the researcher instead modiies the algorithm � ↦→ �′ by replacing (a
subroutine within) it with something simpler for which an argument can be articulated. This trick is then justiied
by introducing a heuristic modelM ↦→ M′ which makes the modiiedM′ [�′] still ‘correct’. Non-standard
cryptographic models are canonical examples, such as the random-oracle model (ROM) [15] and the Fiat-Shamir
heuristic [65], both of which add additional assumptions onto the ‘standard model’ in order to enable proofs.
The use of these heuristic models can introduce additional complexities for analysis of protocols and their
implementations. For example, Dao et al. and Khovratovich et al. each found that incorrect use of the Fiat-Shamir
heuristic introduced attacks into cryptographic protocols used in various blockchain and veriiable computation
applications [47, 93]. For computational reasoning, the researcher has a program � to be submitted as input to
another program �̂ (�) to be computed over. No such �̂ is known or possible, but replacing � with something
simpler � ↦→ � ′ makes �̂ (� ′) practical. Program analysis often uses this technique, for example, when verifying
security protocols ś such as with the Dolev-Yao model [12, 39, 52]. In either case, the approximate nature of these
models makes arguments relying upon them into only ‘heuristic proofs’ [46].

In both contexts, the suitability of the heuristic and the conidence derived from it relate to its idelity, i.e., the
adequacy and accuracy with whichM′ represents the relevant structures ofM. However, even lawed heuristics
may have value. The aforementioned ROM and Fiat-Shamir heuristic are both widely used within cryptography
despite admitting security proofs for insecure constructions in certain pathological cases [32, 74]. What makes a
heuristic satisfactory cannot, by its nature, ever be formally settled. Acceptance is a social process within the
technical community, ideally buttressed with formal analysis of evidence and implications. This process may be
contentious, as demonstrated by the history of the random oracle model itself [32, 72, 94].

1The term ‘heuristic model’ invites an unfortunate clash of language, as the use of formal models and computation to inform mental or
organizational reasoning is itself often a form of heuristic. Nonetheless, the usage of ‘heuristic’ we invoke here is consistent with the language
used in the computer-science literature.
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Assumptions. Presumption is inherent to scientiic modeling as scientists propose theories to explain obser-
vations; thus, all but the most abstract computer science rests on uncertain beliefs somehow. Data suiciency
in machine learning, rationality in mechanism design, or adversarial modeling in information security are
examples of modeling assumptions. Their plausibility cannot be divorced from the social or physical con-
text of the problem, their validity determines whether a technically correct computation is practically useful,
and their justiication determines whether it can be socially beneicial. Thoughtful consideration of modeling
assumptions, whether normative or positive, is perhaps the central focus of sociotechnical analysis of computa-
tion (e.g., [5, 13, 29, 57, 70, 97, 104, 107, 115, 125, 126, 132, 145]).

Our interest instead lies with a distinct class of separable assumptions, whose validity is instead independent
of any speciic practical application. These tend to be narrow statements that a speciic mathematical or physical
construction behaves as intended despite a lack of conclusive proof. Moreover, their validity tells only that a
computation will in practice do what the modeling intends. The distinction in form between modeling and
separable assumptions may be subtle and further complicated by how tightly coupled they often are. Given our
claim that separable assumptions deserve explicit attention, it is important that we be able to distinguish them
from modeling assumptions. We build towards a deinition of separability as well as a qualitative distinguishing
test between separable and non-separable assumption through examples, which also serve to demonstrate the
importance of the former. Our deinition centers on the ability of separable assumptions to stand on their own as
statements whose validity (though not, necesssarily, their relevance) is independent of any particular application.
Though they are far from the only ‘useful’ assumptions in computing, we ind separable assumptions to be far
less commonly discussed as an essential element of problem and domain modeling than non-seperable ones.
One type of separable assumption are well studied yet unproven mathematical statements, believed true by

researchers and used as if they are. Cryptography again provides us with canonical examples in the form of
hardness assumptions [75, 109], e.g., the RSA assumption [124], the Diie-Hellman (DH) assumptions [49], and the
Learning with Errors (LWE) assumption [123]. Because theoretical computer scientists do not yet have the tools
to prove that there are no eicient algorithms for certain problems of interest in cryptography, many practical
cryptographic constructions cannot be unconditionally proven secure [73, 86, 90]. Most designs, including, e.g.,
all practical encryption schemes, instead rely on hardness assumptions, in the sense that there exists a rigorous
proof that breaking the scheme requires invalidating the assumption. This allows study of the latter in isolation,
and conidence in it justiies the claimed security.
As an example, when using the Decisional Diie-Hellman (DDH) assumption, researchers assume that no

practical adversary can determine whether a random element of some speciic algebraic group G is independent
of two others. The assumption directly states that no eicient algorithm can behave in a meaningfully diferent
way when the element is independent compared to when it is not.

Definition 2.1 (Decisional Diffie-Hellman (DDH) Assumption). Let (G, �, �) ← IG(1�) be an instance

generator where �, � ∈ N, and � is a generator of group G of order �. For any probabilistic polynomial-time algorithm

A and uniformly sampled �, �, �
$
←− Z� ,

|Pr[A(G, �, �, �� , ��, ��) = 1] − Pr[A(G, �, �, �� , ��, ���) = 1] | ≤ negl(�)

where negl(�) is eventually bounded above by the inverse of every polynomial function of the security parameter �.

The truth of this statement for a speciic (G, IG) domain does not depend on the context of its use, e.g.,
authenticity in end-to-end encrypted messaging [105, 121]. Notably, the technical requirement that A runs in
"probabilistic polynomial-time" is a standard modeling assumption on adversarial capacity that underlies much
of modern cryptography. This demonstrates how tightly coupled modeling and separable assumptions may
be. While hardness assumptions are separable, they are only of interest because of an underlying modeling
assumption about how capable adversaries are.

ACM J. Responsib. Comput.



8 • S. Judson and J. Feigenbaum

The DDH assumption has been carefully studied, and there are particular domains in which we are conident
in its truth [21]. But it is not proven. A stroke of inspiration could ind an A that violates the assumption on
a domain used for a deployed cryptographic scheme and break it. Even the use of unrefuted assumptions may
provide opportunities to a malicious actor. Cryptographic standardization requires the ixing of domains (and
often speciic instances) for schemes relying on hardness assumptions. Malicious generation can render those
assumptions insuicient because of auxiliary information. Such a subversion almost certainly occurred with the
DUAL_EC_DRBG cryptographically secure pseudorandom-number generator, which is widely believed to have
contained a National Security Agency (NSA) backdoor [27, 78]. Even when researchers have a high degree of
conidence in our assumptions, their use requires care.

Cryptography is far from the only source of separable assumptions in computer science. Of a similar ‘hardness’
lavor are hardness (of approximation) statements like the bounds implied by the Exponential Time Hypothesis
or the Unique Games Conjecture [87, 92]. Much of the research investigating eicient (approximation) algorithms
for important computational problems follows from the assumption by researchers that these results place hard
bounds on the attainable quality of a solution. Although the incorrectness of any of these assumptions would not
then invalidate any known algorithmic runtimes or approximation ratios, it would invalidate existing claims of
conditional optimality that can discourage further attention from researchers. In an entirely diferent domain,
another separable assumption arises in the use of Newton’s Method in numerical analysis for scientiic computing
and optimization. The correctness and eiciency of Newton’s Method is often dependent on assumptions on both
the form of the function being approximated and the quality of the initialization state of the procedure, of which
often neither can be reliably veriied [25, 99]. Inevitably then, the practical use of Newton’s Method rests on the
separable assumption that these conditions are met and so the application of the algorithm is well founded.

As a further ś and distinctly diferent lavor ś of example, technical assumptions arise from executing programs
on physical hardware that imperfectly implements a mathematical model of computation. It is inherent in all of
computing, but especially acute in cryptographic engineering, formal veriication, robotics, and cyberphysical
systems, to assume processors, servos, and sensors appropriately transmute physical phenomena from and into
mathematical information [136]. Failures of these physical assumptions can cause great harm, e.g., the 2018-19
crashes of Boeing 737-MAX aircraft that killed 346 passengers. An essential element of these disasters was the
behavior of control software when readings from sensors did not accurately represent the light dynamics [139].
At the intersection of cryptography and formal methods for program analysis and veriication, side-channel
attacks rely on the physically observable details of how speciic software and hardware implement cryptographic
schemes to steal private information by, e.g., exploiting data-dependent timing and cache usage [12, 120]. Formal
techniques to mitigate these attacks must assume that their protective measures will be rendered efectively
when physically realized.

In each of these examples, the assumption is in some way separable from its potential uses. The DDH and
other cryptographic hardness assumptions are well deined mathematical statements that would be valid objects
of study even if they had no practical use in cryptography; whether Newton’s Method converges is independent
of the application of the function being approximated; a physical sensor on an aircraft is assumed to process
information from the environment correctly, regardless of how that information is put to use for safe light;
general-purpose hardware is assumed to execute a program correctly, regardless of what the application of that
program may be. We deine separable assumptions as those that are both (i) concrete and (ii) self-supporting.
Whether an assumption possesses these two attributes is therefore an airmative (although only qualitative)
distinguishing test.
For (i), a concrete assumption is of the form we assume this object has property � , as opposed to generic

assumptions of the form we assume there exists an object that has property � . This small but important distinction
is raised by Goldwasser and Kalai [75] in the context of cryptography. Generic assumptions are speculative and
lack a means for constructive use. Their proposal can alter the path of research, but only concrete assumptions
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impact the practical use of computation. All of our prior examples are concrete. The DDH assumption for a
particular (G, IG) domain states that a speciic problem is computationally hard. Physical assumptions are
inherently concrete as they pertain to concrete implementations. In contrast, Goldwasser and Kalai provide
examples of various generic cryptographic assumptions that we do not consider separable, such as the existence
of one-way functions.

For (ii), a self-supporting assumption is both well deined and justiiable on its own terms, independent of how
it is used. A researcher can reason about the correctness of the DDH without any reference to cryptography
or evaluate whether a light sensor measures accurately even if it is not connected to the rest of the avionics.
In contrast, the validity of a modeling assumption ś the rationality of auction participants, the adversarial
capacity available for attacking secure communications, the suiciency of data to model an environment, etc.
ś is inherently tied to its deployment. It may always or never be well founded, or perhaps more likely will fall
somewhere in between. But a modeling assumption can never be argued valid in general, independent of the
particular context in which an algorithmic solution built upon it will be used. Simply put, modeling assumptions
assert that we are solving the right problem, and separable assumptions imply that the solution to the problem as
modeled is correct, even should that model prove useless.

An important corollary to self support is that separable assumptions can transfer to entirely unrelated contexts
without any necessary reconsideration of their validity. If we somehow found a use for the DDH in machine
learning, we could apply it with all conidence due to it from cryptography. In contrast, transferring notions of,
e.g., rationality or adversarial intent to ML has required evaluating whether the agents in that setting possess
analogous internal motivation and reasoning as in the economic and information-security contexts.

Parameters. Often the most conspicuously consequential of HMAPs, parameters allow researchers to concisely
specify families of algorithms. Each family member has the same basic architecture, but members difer in
function according to their identifying parameters. The choice of parameters then selects the family member
most appropriate for a speciic use case. This metatechnique allows computer scientists the lexibility to build
expressive and generic theories, with nuanced application to an eccentric circumstance requiring only careful
parameterization. However, it has a consequence. Parameters allow the reduction of social contention or physical
uncertainty to numerical choice. Exempliied by an algorithm for fair ranking from the literature that we will
shortly describe, it can be a deceptively simple choice at that. The sociotechnical implications of parameters are
therefore often more immediate than for heuristic models or assumptions. Although they are not inherent to a
modeled problem, parameters are frequently the intended means for its most stubbornly subjective qualities to
be ixed into mathematical terms. An example of a consequential parameter choice is that of � from diferential
privacy. Others appear in the explosion in technical enhancements for the beneicial use of machine-learning
algorithms, e.g., fair and robust ML.
The goal of adversarially robust machine learning is to prevent an attacker given inluence over the inputs

to a machine-learned model from compromising its accuracy. A particular security concern is that an attacker
may do so through carefully constructed perturbations indiscernable or unsuspicious to human or machine
scrutiny [77, 103, 142], e.g., with small stickers causing an autonomous vehicle to misread a stop sign [63].
Tsipras et al. [142] model adversarial robustness as training a classiier with ‘low expected adversarial loss’

min
�

E(�,�)∼D

[

max
�∈Δ
L(� + �, �; � )

]

for candidate model � , data point (�, �) drawn from distributionD, loss function L, and Δ = {� ∈ R� | ∥� ∥� ≤ �}

a set of perturbations parameterized by � . Increasing � enlarges this set and captures a strictly more powerful
attacker. Its choice so ixes the maximal power of an adversary the learned model is trained to resist.
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We might seem to therefore want as large an � as possible. But, the efect of training against this loss is to
produce a model reliant upon patterns in the data that are invariant when any perturbation � ∈ Δ is added
to an input. This stability prevents those adversarial changes from altering the classiication. However, it also
compromises accuracy on ine distinctions where similarly small changes make all the diference between
two inputs of diferent ground truth. Enlarging Δ through increasing � extends this tradeof to ever larger
perturbations and coarser diferences. Setting � implicitly becomes a choice between prioritizing robustness
and prioritizing accuracy. Beyond just this intuition, the authors of [142] are able to prove the existence of this
tradeof for a pathological distribution of speciic structure. They also establish it experimentally, showing an
inverse relationship between � and accuracy on real datasets.
We must note Tsipras et al. argue that this loss in accuracy may in fact ‘result in unexpected beneits: the

representations learned by robust models tend to align better with salient data characteristics and human
perception.’ But both robustness and accuracy are desirable for the beneicial use of machine learning. Taken at
face value, these results place them in conlict. Employing this approach to robust machine learning requires
choosing through � whether to accept a loss in accuracy for some security ś even when, in theory, that burden
might fall disparately.
In the work of Celis et al. [34], fairness in ranking problems, e.g., search-result prioritization, is modeled by

placing lower and/or upper bounds on the number of entries with a given property that can appear at the top of
the ranking. Although the algorithmic approach is generic, properties are naturally motivated through diverse
representation. An implementation might, for example, require that images returned for search queries not over-
or under-represent some social origin or character ś the present harms of which have been searingly analyzed
and critiqued [113]. The authors formalize this goal as the constrained maximization problem

argmax
�∈��,�

︁

�∈[�], �∈[�]

�� ��� � , such that ��ℓ ≤
︁

1≤ �≤�

︁

�∈�ℓ

�� � ≤ ��ℓ , ∀ℓ ∈ [�], � ∈ [�] .

Here ��,� is the set of binary matrices indicating rankings of� items into � positions,�� � is the utility of placing
item � at position � as determined by some arbitrary (and potentially biased) process, and for a property ℓ ∈ [�],
�ℓ is the set of items with that property. Most important for our consideration, the parameters ��ℓ and��ℓ specify
how many elements with property ℓ must or can be placed in the irst � entries. To instantiate a fair-ranking
algorithm from this deinition requires choice of these thresholds.
We must irst consider whether it is appropriate to model fairness in a use of ranking through proportional

representation with respect to a set of properties. If it is, then an implementer is still left with the choice of
parameters that bound those proportions. This is a conceptually simple decision: ‘In the irst � results returned,
no fewer than ��ℓ and no more than��ℓ results may have property �’ is easily understandable for a non-technical
audience. However, there is no mathematical basis on which to make this choice. It is a subjective social and
political question injected into the mathematical framework through parameterization, and any beneicial efect
of adopting this algorithm is contingent upon it. While the function of these speciic parameters are intuitive
once that social character is recognized, the more sophisticated � of diferential privacy or adversarial robustness
demonstrate that such simplicity cannot always be expected.

Another example of parameterization, in this case from outside of machine learning, arises in Definition 2.1.
The concrete security of a cryptographic scheme is how much computational efort is required of an attacker
for some speciied probability of a successful break. It allows estimation of the time and monetary investment
an adversary may expect to spend directly attacking it, and it is how cryptographers ultimately interpret a
‘practical adversary.’ Concrete security is tuned through choice of security parameter for the underlying hardness
assumption(s). One such parameter is the � of Definition 2.1. A major battleield of the Crypto Wars of the 1990s
was intentionally weakened export-grade cryptography. For the government of the United States, preventing the
legal export of practically secure cryptographic systems was as simple as taking a theoretically secure design and
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mandating a security parameter (rendered through key length) with insuicient concrete security to prevent
attacks [5, 50]. Even when we are conident in hardness assumptions and our reductions to them, concrete
security is still contingent on careful parameterization.

Discussion. Many computer scientists recognize that HMAPs can carry signiicant sociotechnical implications.
One of the reasons for our frequent reference to cryptography is the seriousness with which its research
community scrutinizes and accepts heuristic models, assumptions, and parameters, in order to robustly guarantee
security and privacy (e.g., [21, 27, 32, 47, 72ś75, 90, 94, 109, 125]). However, computer scientists possess the
scientiic background, mathematical maturity, accrued expertise, and, frankly, time, interest, and grant dollars to
carefully consider the details of technical research. The rise in interdisciplinary collaboration and education ś
joint degree programs, dual-track conferences and forums, and scholarship such as [13, 97, 104, 108, 115, 132, 145]
ś is an encouraging sign that conspicuous sociotechnical concerns, such as modeling assumptions, will see
suicient consideration. For example, the quality of data used for machine learning has drawn commentary from
numerous technical and humanistic perspectives, such as in [13, 29, 70, 104, 107, 108, 113, 132]. However, broad
and thorough treatment of the obscurer HMAPs is more irregular.

Three inluential articles demonstrate a lack of explicit consideration of HMAPs at the intersection of computer
science and law: Ohm’s Broken Promises of Privacy [115], Barocas and Selbst’s Big Data’s Disparate Impact [13],
and Kroll et al.’s Accountable Algorithms [97]. All three (excellent) articles were written by technically adept and
knowledgeable authors. Those of Kroll et al. include multiple active computer-science researchers. Each article
provides detailed, thorough, and accessible analysis of the key modeling questions and proposed technical designs
within their scope. However, their treatments of HMAPs are limited, and therefore many of the algorithms and
techniques they present as valuable governance tools are analyzed without consideration of their fundamentally
qualiied and conditional nature. Ohm only reproduces a igure from [26] demonstrating that a privacy vs. utility
tradeof at the heart of his analysis can be parameterization-dependent but otherwise leaves ‘the full details...
beyond the scope of this Article.’ Barocas and Selbst quote that Dwork et al. ‘demonstrate a quanti[t]ative trade-of
between fairness and utility’ in their inluential Fairness through Awareness [56]. No mention is made, however,
of the technical conditions under which the tradeof is provable, nor that Dwork et al. propose for scientists and
engineers to tune it through parameterizations for constraining bias and the learning of metrics. Meanwhile,
Kroll et al. identify multiple areas that depend on HMAPs: program analysis, cryptographic commitments,
and zero-knowledge proofs. Nonetheless, their consideration of it is limited and indirect, comprised mostly of
discussion about how accountable randomness requires addressing assumptions that theorists usually make
about its physical collection.

This is not surprising. These articles focus on the law, not the technology. The audience is composed of lawyers
who may not have the background for or interest in any further detail, and ample references guide those who do.
The choice of how much technical detail to incorporate was, we are sure, a thoughtful, measured, and ultimately
wise and good decision on the part of all the authors. But it is the clear intent of each of these articles to be a
reference and resource, to help guide and shape how the scientiic elements of diicult sociotechnical questions
raised by privacy, accountability, and data mining are discussed and understood in legal scholarship and practice.
Just because detail is withheld for good pedagogy does not mean that detail is irrelevant, and the understanding
of practitioners must incorporate the implications. HMAPs often fall into a grey zone. Their exclusion from
foundational work at the intersection of computer science and law is in some sense justiied by their obscurity
and opacity, but it remains consequential to the ideas present in that scholarship.
For example, in evaluating barriers to reform of social harms from computational data analysis, Barocas and

Selbst write ‘[s]olutions that reduce the accuracy of decisions to minimize the disparate impact caused by [data
modeling] will force analysts to make diicult and legally contestable trade-ofs.’ The fair-ranking scheme of
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Celis et al. demonstrates the importance of HMAPs to such choices. The base unconstrained maximization
problem requires no compromise, so the ‘legally contestable’ nature of the enhanced algorithm derives entirely
from ‘such that ��ℓ ≤

∑

1≤ �≤�
∑

�∈�ℓ �� � ≤ ��ℓ , ∀ℓ ∈ [�], � ∈ [�] .’ Any question of its acceptability and legality
would reduce to (i) the modeling decision to introduce that constraint schema, (ii) the further modeling decisions
of choosing properties and classifying items to deine the �ℓ sets, and (iii) the choice of parameters ��ℓ and��ℓ .
The full burden of ‘fairness’ falls upon the validity of all three. It is to the great credit of Celis et al. that ��ℓ and��ℓ

have such simple and approachable mathematical function. But not all fairness parameters may be so explicable,
let alone all HMAPs of sociotechnical importance. Establishing the full measure of the type of solutions that
Barocas and Selbst propose will require pushing past the basic principles of formal representations of ’fairness’
into some of the more obscure mathematical details.

Without care, consequential questions around HMAPs may come to be viewed outside of computer science as
mere implementation details, especially when they are inscrutable to non-technical observers. If so, the heavy
burden and signiicant inluence those questions can bear may be delegated to people and processes without
the insight to act efectively in the public interest. Moreover, the various academic, ethical, legal, political, and
societal mechanisms that govern computing will fail to capture the full challenge faced by those who manage
these technologies in practice. They will be rendered at best incomplete, at worst impotent.

3 Six Hazards

To this point, we have justiied our interest in HMAPs through reference to how they can bear signiicant risk
while appearing obscure, opaque, inconspicuous, or pedantic. However, HMAPs possess other qualities that
intensify the challenge to sociotechnical scrutiny they present. We see HMAPs as presenting six hazards to broad
and thorough analysis ś in a manner notably distinct from modeling choices and algorithm design ś especially
for practitioners with limited scientiic expertise. We also briely note that, like HMAPs themselves, these hazards
overlap signiicantly with veins of both philosophical theory and analysis of existing practice in adjacent domains,
like statistics and economics [24, 45, 138].

Hazard #1: Obscurity and Opacity. Explicitly,while their uses may have signiicant social consequences, HMAPs

are themselves of a purely technical nature. So, their existence or basic function may not be apparent to those without

non-trivial scientiic understanding.

Hazard #2: The Pretense of Formalism. That irst hazard is only compounded by how HMAPs often carry a

pretense of formalism when of mathematical origin. While algorithms may be presented in mathematical terms,
our common language captures their creative dimension. We design algorithms, we write programs, we construct
protocols. They do not bring the sense of inevitability that HMAPs may. Heuristic models, assumptions, and
parameters often present as mathematical detail and so as inherently true or false, right or wrong, in a way the
subjective or empirical nature of modeling does not. Some of these objects do have well deined truth values.
Cryptographic hardness assumptions, like the DDH over a given (G, IG) domain from ğ2, are well deined
mathematical statements. We just have not (yet?) irmly established their truth [21, 73]. Others, especially heuristic
models including, e.g., the aforementioned ROM [15], are often not ‘provable’ because of theoretical technicalities.
Any impression they give of formal truth is likely harmless outside scientiic discourse. But many other HMAPs ś
especially parameters ś often have only a social or empirical basis. Their presentation as mathematical ideas and
notation, e.g., the � of adversarial robustness or diferential privacy, may inadvertently launder that amathematical
character.

Hazard #3: Inaccessibility. Technical simplicity can aid scrutiny of the sociotechnical repercussions of HMAPs.
The simple function of ��ℓ and ��ℓ is, e.g., a great strength of the fair-ranking approach of Celis et al. [34] as
discussed in ğ2. However, in general such clarity is never assured, highlighting how HMAPs that demand careful
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sociotechnical scrutiny may be technically complex and thus inaccessible to practitioners. The ��ℓ and��ℓ parameters
avoid this hazard. Although they carry immense social depth, once that is recognized it is not hard to imagine
reasonable processes ś commercial, legislative, regulatory, judicial ś for choosing them. They are simple enough
in technical form and function to be consistent with traditional modes of resolving social contention. In contrast,
for adversarial robustness the simple structure of � ∈ R paired with its immense impact makes it far harder to
conceive of a selection method able to comprehensively translate its sociotechnical dimensions to and from its
mathematical choice. Even the smallest tweak can lead to new inaccuracies for a machine-learning model with
signiicant social consequences, even if on the whole the test accuracy of the model is barely degraded. This
diference stems from the gap between the focused and transparent operation of the fairness parameters and
the sweeping fullness of � . While the former have a clear and self-contained function as targeted and modular
components of a broader ranking system, the latter bears a much greater sociotechnical load as the unique
fulcrum balancing robustness against accuracy.

Hazard #4: Indeterminism and Unfalsiiability. Each of the preceding hazards concerns whether the
nuances of HMAPs will be adequately conveyed to practitioners. The fourth hazard works in the opposite
direction ś it speaks to whether computer scientists can assuage concerns raised when HMAPs are indeterminate

or unfalsiiable. By indeterminate, we mean that there is no technical notion that captures all of the failures that
can result from their use. By unfalsiiable, we mean there is no (practical) mechanism by which its choice or
acceptance may be shown incorrect on purely technical grounds. In other words, we cannot know every way
indeterminate HMAPs can fail, while we are unable to demonstrate that the use or choice of unfalsiiable HMAPs
must be wrong. Indeterminate and unfalsiiable HMAPs can complicate demonstration of the (non-)existence of
risk and harm from computing, which is essential for its thorough sociotechnical analysis. Although this hazard
is less distinctive of HMAPs, it takes on a harder edge in the shadow of its irst three siblings.
Heuristic models and assumptions may be given a formal structure independent of context and so are most

often determinate either formally or empirically. We can know, at least in principle, what their failures could
be and the technical consequences. All heuristic models are unfalsiiable by deinition. The ROM and Fiat-
Shamir heuristics are as noted provably false in general [32, 74], which is why reliance upon them will always
be uncertain. Assumptions are usually falsiiable. Although not able to be ‘disproven’ mathematically, most
physical assumptions relevant to deployed computing may be shown invalid in relevant contexts through robust
empirical investigation by engineers and natural scientists. Mathematical assumptions are (up to the independence
phenomenon) falsiiable by rigorous proof.
Indeterminate and unfalsiiable parameters are pervasive. For many, the subjective nature of their selection

precludes any purely technical notions of falsity or failure. The � of adversarial robustness, the � of diferential
privacy, and the ��ℓ and ��ℓ of ranking fairness all are so. There is no inherently right or wrong choice of
tradeof between robustness vs. accuracy, privacy vs. utility, or fairness vs. (perceived) utility respectively,
except under a subjective and prescriptive sociotechnical judgement. It is worth noting, however, that other
parameterizations may be placed on mathematical foundations that allow empirical analysis of their validity. Not
all are indeterminate or unfalsiiable. Tuning the concrete security of a cryptographic scheme through choice of
� is an excellent counterexample [9, 23, 35]. Some parameterizations of a social or physical character may also
have determinate and falsiiable implications. For example, in the theory of machine learning, a parameterized
choice of desired accuracy and conidence provably dictates the theoretically required size of the training dataset,
known as the sample complexity [134].

Hazard #5: Research Attention. The inal two hazards relate to how the broader systems built around
computation manage HMAPs. One concern is that study of HMAPs may have a limited constituency within the

research community ś or, at least, a limited constituency in comparison to the size of the community for the
relevant theory ś not all researchers in which may be interested in investigating such detail. An important variant
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of this hazard is when interdisciplinary evaluation of HMAPs is required by its social or physical character and
implications, but little collaboration arises. For example, and as we will discuss in further detail in ğ4.3, attention
from economists, social scientists, and statisticians on parameterization of diferential privacy has ś despite some
excellent work ś been dwarfed by interest in its theoretical reinement and extension [6, 48, 59, 69, 84, 100, 144].
Computer-science researchers may believe that it is the responsibility of practitioners to do the hard applied

work of developing parameterizations. Even if this particular burden shifting does not transpire, analyzing
parameter choices and the reliance of constructions on heuristic models and assumptions may be seen as a
secondary efort for which researchers will not be as well rewarded professionally compared to developing
new theoretical results. Although far from perfect, cryptography remains the gold standard on addressing these
hazards and provides an example of valuing such research eforts. Hardness assumptions often receive substantial,
independent attention from leading researchers [21, 123], and a small number of cryptography researchers
devote a considerable portion of their research programs to keeping the use of many physical assumptions and
parameters honest, e.g. [17, 23, 80, 81]. This line of applied analysis has been essential for conidence in the
security of deployed cryptography.

Hazard #6: A Soft Underbelly. Finally, HMAPs may form a soft underbelly in regulatory and legal mechanisms,

as well as in the positive use of computation to address social problems. Any efort to manage technology through
qualitative evaluation, mandates, and procedures must be sensitive to its technical eccentricities. The examples
of backdoored standards and export-grade restrictions in cryptography (see [5, 27, 50] as raised in ğ2) show
how HMAPs may be vehicles for politically motivated compromise. The converse ś where the subjective or
indeterminate elements of a technology are used to subvert the governing infrastructure built around it ś is also
of grave concern.

Without thoughtful analysis stimulated by deep technical understanding of HMAPs, their careless, negligent,
or malicious use might defang regulation and legislation. The assurance intended by a requirement for formal
veriication of a cyberphysical system depends entirely upon the validity of the physical assumptions underlying
that analysis. Should a search engine be required to integrate algorithmic techniques to minimize bias, its
engineers might reach for Celis et al.’s fair-ranking algorithm, with the resultant efect fully at the mercy of
choice of ��ℓ and ��ℓ . Mandates both for machine-learning accuracy and for its robustness, if the latter were
instantiated through an approach like that of Tsipras et al., would be in direct tension, only resolvable through
the contentious selection of � . To the extent that ideal parameters can exist in some qualitative and subjective
sense, they may be application-speciic and not amenable to global standardization as cryptographic key lengths
are. Any legal inding of fact as to whether a choice of ��ℓ or � produced harm would require signiicant technical
expertise. Proactive regulatory approval would further require availability of that expertise on a considerable
scale, given the growing use of ML. Such problems will only proliferate alongside the ever increasing use of
computation.

In general, without public infrastructure conscious of the need to evaluate and guide dependence on HMAPs,
it may be diicult to bring about desired social efects. Further, the nuances of HMAPs are shaped by modeling;
so they are only addressable after clearing a irst hurdle of designing legal and regulatory systems around the
intricate diiculties of the latter. The muddier that process is, the harder establishing consensus around HMAPs
may very well be. Uncertainty as to whether and how robustness should be mandated for machine learning, e.g.,
might complicate the ultimate selection of � as stakeholders disagree on appropriate burdens and goals.
The potential of HMAPs to subvert oversight also applies to any suggestion, like that of Abebe et al. [4], to

use computation as a tool for positive social change. As they write, ‘because they must be explicitly speciied
and precisely formalized, algorithms may help to lay bare the stakes of decision making and may give people
an opportunity to directly confront and contest the values these systems encode.’ However, the uncertain and
subjective nature of HMAPs strikes at the ability to understand just what exactly systems built on computation
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encode and express. As a general principle, this inal hazard states that, when the efect of a computation is
dependent upon HMAPs, any attempt to control and wield it for social gain is reliant upon due consideration of
its heuristic models, assumptions, and parameters. This is particularly precarious in light of the irst ive hazards.

4 Examples

We give more in-depth consideration to three indicative examples of the inluence of HMAPs. Each instance is
integral to a topic that is currently a focus of sociotechnical analysis and debate.

4.1 Post-uantum Cryptography Standardization

Many popular hardness assumptions that underlie widely used cryptographic schemes have a curious status.
Although for the moment intact in the face of classical adversaries, they are known to be broken against an attacker
with an (as yet hypothetical) quantum computer of suicient capability. Examples include the RSA [124] and Diie-
Hellman (DH) assumptions [49], which are theoretically susceptible to the quantum polynomial-time algorithms of
Shor [135]. A quantum computer capable of running Shor’s algorithms on real-world cryptographic deployments
may be decades or more away. Nonetheless, some actors ś particular intelligence and defense agencies ś have need
for even longer assurances of information security, especially in the face of ‘harvest now, decrypt later’ threats.
As such, in 2022 the United States government, through the National Institute of Standards and Technology
(NIST), standardized a irst set of post-quantum cryptographic (PQC) schemes based on assumptions believed
secure against even quantum adversaries [9]. Given the inluence of prior NIST standardization processes, it
is very possible that in the near future such algorithms will be required to be supported by any cryptographic
technology used ś by rule ś by the United States government and ś by convention ś most global commerce.

With one exception the standardized algorithms are all instances of lattice-based cryptography and derive their
security claims from the hardness of (variants of) the LWE problem [123]. However, the standardization process
received numerous submissions reliant on many alternative mathematical assumptions, some of which were
found to collapse under the close scrutiny placed on them during the highly competitive process. In multiple
cases, proposed schemes were found to be quickly breakable by classical computers. In other cases, assumptions
were not found to be broken per se but were shown to be much weaker than originally believed, as new attacks
chipped away at the concrete security provided. This led to adjustments in which the parameterizations of the
submissions were tweaked to increase the margin of security provided by the schemes. This arms race was very
much in the spirit of the open competition fostered by NIST, in which teams (and external researchers) were
invited to analyze and attack the constructions of their competitors. However, it laid bare how many of the new
assumptions, based in many cases on much more complex mathematical objects than the RSA or DH problems,
were not as well understood as the community may have hoped.

Take, for instance, the following account of how the submission of Rainbow, an instance of multivariate

cryptography, was tweaked during the standardization process [19]. The speciic details of the scheme, its
parameters, and the attacks are beyond our scope. Relevant to our analysis is instead the way parameterizations
were used to paper over weaknesses in the concrete hardness of the relied upon theoretical assumption (citations
removed):

The participation of Rainbow in the NIST PQC project motivated more cryptanalysis. During the second round
of the NIST project, Bardet et al. proposed a new algorithm for solving the MinRank problem. This drastically
improved the eiciency of the MinRank attack, although not enough to threaten the parameters submitted to
NIST. A more memory-friendly version of this algorithm was proposed by Baena et al. Perlner and Smith-Tone
tightened the analysis of the Rainbow Band Separation attack, showing that the attack was more eicient than
previously assumed. This prompted the Rainbow team to increase the parameters slightly for the third round.
During the third round, Beullens introduced new attacks which reduced the security level of Rainbow by a
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factor of 220 for the SL 1 parameters. The Rainbow team argued that, despite the new attacks, the Rainbow
parameters still meet the NIST requirements.

Unfortunately for Rainbow this back-and-forth was not the end of the story. This excerpt is drawn from the
introduction of Beullens’ Breaking Rainbow Takes a Weekend on a Laptop [19], which showed that the scheme as
then proposed was still susceptible to a classical attack that could, in fact, be executed over a weekend (~53hrs) on
a commodity laptop. Although Beullens noted that yet another adjustment to the parameterization might limit
the practicality of the attack, he also noted that the attack itself could be strengthened further. In the aftermath
of this attack ś and the aspersions cast on the assumptions underlying Rainbow in general ś it was not chosen
for standardization. Nor would any other multivariate cryptographic construction be selected either.
Another example occurred with Supersingular Isogeny Key Encapsulation (SIKE), based on Supersingular

Isogeny Diie-Hellman (SIDH) and the standard bearer for isogeny-based cryptography more generally. Although
not selected for standardization, SIKE was originally selected for continuation into an (ongoing) fourth round of
the NIST competition [9]. Shortly afterwards, Castryck and Decru announced an attack on SIDH [33] that was
able to break the proposed SIKE parameters within a day on a laptop and then was quickly further improved
to get the time to under an hour [117]. Their attack was based on applying a decades-old result from algebraic
geometry whose eicacy against SIKE and SIDH had not yet been fully harnessed in the prior cryptanalysis
literature. In addition to undercutting the NIST submission, Castryck and Decru were also able to claim a $50k
USD prize put up by Microsoft (where part of the SIKE team was based) as part of a challenge to motivate external
cryptanalytic attention on the scheme [106].

Even the lattice-based schemes ultimately selected were not without controversy. Numerous mailing-list ights
and some publications were devoted to arguments about their security and parameterization, many of which were
rife with personal animosity and accusations of motivated reasoning among the participating researchers [16, 18].

The Six Hazards. The post-quantum cryptography standardization process makes for an excellent example of
the research community’s navigating the six hazards not just despite ś but in a sense because of ś the existence
of Rainbow, SIKE, and other lawed submissions. A robust process encourages exploration held up to tough but
fair scrutiny.

Cryptographic assumptions and the resultant theoretical and concrete security of constructions based on them
are formal objects, but they are certainly obscure, opaque, and inaccessible. The process of standardization itself
is designed to mitigate these three hazards, by having a small group of computer scientists reach a consensus on
what is secure that the rest of the world can then blindly follow. This process takes advantage of an exceptionally
rare quality nonetheless present in modern cryptography: With due care, researchers can make global choices of
assumptions, algorithms, and parameters tuned against conservative predictions of present and future adversaries
up to and including nation states and quantum computer-wielding attackers. The choice of schemes and parameters
to standardize is empirical (albeit supported by strong theoretical underpinnings), but it is not social. There
can in principle be one ‘good enough’ answer for everybody. Of course, as the history of the DUAL_EC_DRBG
pseudorandom-number generator backdoor demonstrates, a choice of cryptographic standard may in fact be
‘good for me, but not for thee.’ However, the open nature of the PQC process, as well as its international, academic,
and commercial participation, renders direct backdoors unlikely. The intended future use of the standards by
the United States’ own security community provides even greater conidence that the standards are not a soft
underbelly to be intentionally subverted.
Nonetheless, the other hazards render the process still fraught. Although choice of assumptions is falsiiable

and selection of parameters can, with care, be determinate, at the cutting edge there is still an immense amount
of fallible guesswork. Heavily scrutinized, justiied, and debated guesswork, but still, in the end, guesswork, as
demonstrated by the near misses of Rainbow and SIKE. Moreover, although the PQC standardization process
provided a forum for signiicant and successful research attention on the HMAPs relevant to its candidates, the
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length and depth of the scrutiny is rare even by cryptographic standards. The example of SIKE, which had already
seen signiicant research attention before the competition, lays bare how much scrutiny can be needed for a
design to truly be trustworthy.

4.2 Machine-Learning Hyperparameters

Few if any computing technologies are at present under as extreme scrutiny from legal and policy experts ś
and society at large ś as machine learning. The autonomous or semi-autonomous use of automated decision
making and generative models brings signiicant promise to applications throughout nearly every facet of modern
society. But it also brings a commensurate risk of social harms and economic upheaval. At present lawmakers,
policymakers, and regulators are scrambling to catch up to the explosion in both hype and deployment of
ML-based systems ś and generative large language models (LLMs) in particular. Just at the federal level of the
United States government over a little more than six month period bridging late-2022 into early-2023, the White
House Oice of Science and Technology Policy proposed a Blueprint for an AI Bill of Rights [114], the Federal
Trade Commission (FTC) and Department of Justice (DOJ) joined with other regulatory agencies to put out a
joint statement reiterating their commitment to actively regulate AI [38], and Congress held widely covered
hearings on the societal and policy implications of these new technologies [133].
At the same time, research into machine learning and its many applications is facing a burgeoning repro-

ducibility crisis [88]. Although there is a robust theoretical framework for ML [134], our practical understanding
of these models is most often driven by empirical data and ś especially in the case of generative tools ś anecdotal
experience. There are a number of diferent mechanisms that can render the results of an analysis of an ML
system suspect (see [88] for a survey). One particular source of diiculty can be underspeciied or overtuned
choices of hyperparameters [43].
By convention, the parameters of an ML model are its internal constants derived algorithmically during its

learning phase, and then used to evaluate new inputs in deployment during the inference phase. Our ‘parameters’,
i.e., in the sense of HMAPs, are instead referred to as hyperparameters (or sometimes metaparameters or tuning
parameters). Hyperparameters range from objects of obvious social importance ś such as the examples of fairness
(hyper)parameters previously discussed ś to much more obscure technical objects. For example, a canonical
hyperparameter in machine learning is the learning rate (often notated �), which is a scalar factor that afects how
much the model is tweaked in response to mistakes made by it on the training data during the learning phase.
Another example, particularly relevant to generative AI, is the temperature. Many generative and classiication
models produce not only a distinct output, but a probability distribution over many possible outputs ś which
doubles as both a source of alternative assessments and a measure of conidence in that singular output. The
temperature adjusts how conident the model should be in inding a unique judgement, against ‘lattening’ the
probability distribution to put more weight on alternatives [82]. Choice of hyperparameters has an immense
efect on the accuracy of trained models, to the point that hyperparameter optimization (HPO) has become its
own distinct ield of study within the ML community [64].
Many common machine-learning hyperparameters like the learning rate and temperature have a distinct

nature as either social-empirical or physical objects ś respectively depending on whether the process being
learned is social or physical in nature. In some sense, they are poor examples of HMAPs, because they are often
set purely empirically during training by inding which selection leads to the best results on benchmarks. As
such, at irst glance, there can seem to be nothing particularly impactful about them beyond their inluence on
those benchmarks; therefore, they can seem to be of little social importance. However, the straight line view of
machine learning ś modeling to data harvesting and preprocessing to learning to validation to deployment ś is
increasingly being replaced by viewing ML-based systems as forming lifecycles [71, 111]. Almost inevitably, the
design and deployment of ML-based systems turns out to be an iterative process in which the eicacy of models
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generated during previous cycles informs changes and improvements to the process for the next iteration. In the
lifecycle model, the empirical selection of such hyperparameters begins to take on a more dynamic and socially
relevant role, because the decision by the implementer to accept a certain level of performance as attainable
through hyperparameter optimization may drive how they choose to update their data, model architecture, and
benchmarks in future cycles.

Moreover, other hyperparameters more clearly it our the mold of HMAPs as objects that shift responsibility
for normative design decisions onto the implementer. For instance, many ML classiication models work by
converting a conidence score into a prediction using a threshold hyperparameter. In the case of, say, a binary
classiication model prescreening resumes for hiring, choice of the threshold exactly determines which candidates
move on to a human assessment.

Hyperparameters present a number of challenges for interpretation and replication of ML-based research. One
major problem is overtuning, where researchers ind hyperparameters than are optimal for their benchmarks
but may not generalize, making their results of limited value. This may make it hard for governance bodies to
assess the true state-of-the-art for various tasks and overall capability of ML methods, as well as to determine the
efectiveness of technical ‘mitigations’ such as fairnness metrics and constraints. Cooper et al. study this problem
with an eye towards a formal framework that aims to prevent this ‘gaming’ of empirical ML studies [43]. Another
concern for open and comprehensive assessment of ML claims is that hyperparameters and other model properties
are increasingly kept private in the name of intellectual property and propriety. This secrecy is inexorably tied
to concerns about centralization of ML technologies and their monopolization and regulatory capture by the
organizations that create them. The necessity for secrecy is sometimes even justiied by as yet unfounded claims of
existential risk due to a ‘runaway’ artiicial general intelligence (AGI) [133], as occurred with the release of GPT-4
by OpenAI, who refused to disclose many critical technical details about their hyperparameters, architecture, and
overall method [116].

The Six Hazards. Machine-learning hyperparameters receive intense research attention. However, they test
the ive remaining hazards. Hyperparameters certainly can be obscure and opaque. Many refer to particular
technical details of not just machine-learning models in general like the learning rate, but even speciic neural
network or other model architectures. Hyperparameters can also carry the pretense of formalism, as many can be
analyzed through computational learning and other algorithmic theories, albeit in a way that does not necessarily
fully capture their empirical behavior [41, 42]. The behavior of the parameters themselves can also lead them to
be inaccessible. Some, such as the learning rate, sample complexity, or ��ℓ and��ℓ of Celis et al., are not overly
diicult to convey, hence our invocation of them in this article. However, others, such as the hyperparameters
that deine convolutional architectures so essential to efective image models, can be far more mathematically
intensive to understand the implications of.

Hyperparameters are almost always indeterminate, being of a social or empirical nature, at least when it comes
to their practical efect. Once again, fairness (hyper)parameters are a canonical example, as are classiication
thresholds, but even acceptance of a parameter like the learning rate often comes down to an informal determina-
tion that it is ‘good enough’ based on empirical validation that may or may not match the real-world distributions.
When falsiiable, they are so through computational learning theory, which may or may not be directly applicable
to the empirical practice of machine learning itself. Hyperparameters can also certainly provide a soft underbelly
for subverting governance of machine learning, because, when indeterminate or not strongly speciied, the
ultimate societal efects of an ML deployment can have immense variation.

4.3 Diferential Privacy

We last return to a parameterization that exempliies all of our hazards, the � of diferential privacy [54, 55, 58,
59, 146]. DP provides a rigorous and provable deinition of privacy for statistical database queries, as heuristic
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anonymization techniques are often susceptible to attacks [51, 110, 115]. The principle of DP is to associate
privacy not with constraining data collection or collation, but rather data analysis.
DP is an indistinguishability deinition derived from cryptographic theory [76]. Informally, two probability

distributions are indistinguishable if no adversary can determine from which (a sequence of) observed samples
are drawn. Definition 2.1 is an example. This fundamental concept extends to one of near indistinguishability,
where nearness is moderated through a parameter � . The justiication for DP is that, if the outcome of a statistical

analysis is near-indistinguishable between databases that difer only in the inclusion of a single entry, then an

adversary cannot learn too much about that entry from the outcome of the analysis alone. A diferentially private
mechanism is an algorithm for answering statistical queries guaranteed (usually through the introduction of
calibrated noise) to be insensitive to any speciic data entry, yet still give a reasonable approximation of the
desired statistic. The original formulation of DP makes near indistinguishability rigorous through the following
parameterized deinition [58].

Definition 4.1 (�-indistinguishability). Two random variables � and � are �-indistinguishable, denoted

� ≈� �, if, for all measurable sets � ∈ F of possible events:

Pr[� ∈ � ] ≤ �� · Pr[� ∈ � ] and Pr[� ∈ � ] ≤ �� · Pr[� ∈ � ] .

To provide a formal theory of data privacy, DP operates over a universe D� of databases with � entries drawn
from some domain, such as R� . For a given database � ∈ D� , an adjacent database �− difers from � only in
having one constituent entry deleted. A mechanismM is then identiied with a random variable taking on its
output when executed over a given database.

Definition 4.2 (�-differential privacy). AmechanismM is �-diferentially private if, for all adjacent databases

� ∈ D� and �− ∈ D�−1,M(�) ≈� M(�
−).

This deinition is not unique. According to a 2020 survey, ‘approximately 225 diferent notions, inspired by
DP, were deined in the last 15 years’ [48]. Each variant modiies one or more aspects of DP through an
alternative mathematical formulation. Many of these deinitions require distinct parameterizations, and some
have been shown to introduce vulnerabilities to reconstruction attacks of exactly the kind that DP was invented
to prevent [122].

Any theory of privacy built on Definition 4.1 depends absolutely on careful choice of � , demonstrated in the
extreme by the fact that any two distributions on the same support are �-indistinguishable for all

� ≥ sup
� ∈F

�

�

�

�

ln

(

Pr[� ∈ � ]

Pr[� ∈ � ]

)�

�

�

�

.

If, e.g., we let� take on a fair coin lip and � take on a biased coin lip with a 90% chance of heads ś two distributions
hardly indistinguishable in any intuitive sense of the word ś then � ≈1.61 �.2 Diferential privacy is prima facie

useful as it provides mechanisms that limit information leakage from statistical database queries. However, the
beneicial use of DP requires principled choice of � . Only then can a deployment provide a meaningful assurance
of privacy to the individuals whose data are at risk.

An oft-used descriptive name for � is the privacy budget [58], spent through information leakage in response
to (a composed sequence of) queries. Like any budget, if too limited it has little utility as the returned statistics
will not be meaningful. Conversely, if too generous nothing is beyond acquiring, and thus little to no data
privacy is actually provided. It is a knob that must be tuned to trade of privacy and accuracy, with (i) no
immediate from-irst-principles approach with which to do so, as evidenced by the breadth of techniques

2This example, while simple, is not idle. Coin lips are the basis of randomized response, a sociological research technique for deniable
acquisition of data that is often used to motivate DP [59].
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proposed [6, 59, 60, 69, 84, 95, 96, 98, 100, 102, 119], and (ii) penalties to accuracy or privacy from a lawed choice,
as demonstrated by the controversy surrounding its use for disclosure avoidance in the 2020 US Census [6, 10, 28,
30, 31, 69, 79, 85, 91, 127, 129, 146] and critical comments on deployments by Uber and Apple [66, 140].
There is a simple but helpful economic understanding of � , presented in [59]. Suppose the running of a

mechanism leads to some real-world outcome that an individual derives some proit or loss from, such as a
job ofer or a higher interest rate on a loan. The guarantee of diferential privacy provides that the expected
utility (the average proit or loss) for the individual cannot change by more than a factor of �� depending on
whether or not their data are included in the analysis. When � < 1 then �� ≈ 1 + � ≈ 1, and the utility can barely
change. However, when � is (much) bigger than one, suddenly this (admittedly very rough) upper bound on the
worst-case change in utility can be immense. If, e.g., � ≈ 19.61, then this �� factor is over three hundred million.
Although this is just a bound, in practice it indicates that an individual may have no formal guarantee that their
participation in the analysis will not drastically alter the likelihood of being harmed rather than helped by doing
so. Invoking Tolstoy, Dwork et al. in [57] formulate the maxim that ‘[w]hile all small � are alike, each large � is
large after its own fashion, making it diicult to reason about them.’ When large epsilons appear in practice, they
demand scrutiny.
The parameterization of a diferentially private mechanism is not the only concern with its use, as the

deployment of DP brings all the attendant diiculties of modeling. Any system that depends on statistical analysis
or learning can ś whether through malice, negligence, or earnestness ś gild harms with a craven appeal to
quantitative impartiality. Even assuming best intentions, data may be of insuicient quality or completeness for
its proper use. This risk is made even more acute by the noisy nature of DP mechanisms, which require an excess
of signal to survive. The use of DP for the 2020 US Census may, e.g., wipe small communities of the statistical
map [79]. Which of the many variants and derivatives of DP is best suited for a given setting may also be a
delicate decision. Moreover, by placing the locus of privacy on data analysis rather than collection or collation,
even a socially beneicial use of diferential privacy opens the door to the eventual misuse of that data in the
future [125].3 Finally, DP is designed to limit the marginal harm to a single individual from the decision to allow
analysis of the individual’s data but makes no promises about harm to the individual from trends at the population
level. The canonical example, presented in depth in [59], concerns diferentially private analysis relating health
data and healthcare costs in order to set insurance premiums. If an individual has a behavior or condition that
correlates with higher costs across the dataset, DP promises that the marginal inclusion of the individual’s data
in the analysis will not greatly exacerbate any premium increase attributable to the discovery of this relationship.
However, it may be that, if every individual with the behavior or condition refused to participate in the analysis,
the correlation would go unnoticed and the individual’s premiums will not increase at all. Diferential privacy
minimizes the risk to an individual from the additional inclusion of his or her data but does not necessarily
minimize the risk to that individual from inferences made about them based on population-wide trends, to
which their participation contributes. So even under DP the decision by an individual to share data as part of a
collective action can still harm them. This point received particular attention during the debate over the 2020 US
Census [28].
But in the end, the implementer must make a choice of � . That choice is, in the opinion of Dwork and

Smith, ‘essentially a social question’ [60]. The problem has been studied formally through the lenses of resource
allocation, economic valuations, and individual preferences [6, 84, 95, 96, 119]. These approaches read promisingly
but generally require a responsible party ś either an individual or a corporation or government acting on the
individual’s behalf ś to precisely quantify privacy valuations or preferences over data and events. Whether this

3There do exist alternatives to the naive curation model of diferential privacy where a trusted party handles data collection and analysis,
most notably the local [59, 89] and shule [20, 37, 61] models. Although they do not require complete trust in a single party, they have
reduced accuracy, require additional data, and/or carry increased computational cost.
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requirement is tenable is at best contentious in the prevailing research, especially for individuals whomay struggle
to comprehend the basic principles of diferential privacy or assess the economic value of their data [7, 8, 147].
The example of Uber also shows that even technically adept corporations may struggle with scientiic evaluation
of DP, let alone with earning the trust not to misuse data from its subjects [66, 115]. Alternative research has
explored using statistical techniques [98, 100, 102], which are however contingent on knowledge of some or all of
an attacker’s goals, prior beliefs, and auxiliary information. These requirements reverse one of the most lauded
attributes of Definition 4.2, that the privacy guarantee of DP holds absolutely no matter the adversary or the
data distribution [59].
Perhaps more realistic assessments of how � will be chosen come from Dwork and Roth [59], from the

experience of the US Census Bureau [6, 30, 31, 69], and from Dwork et al. in Diferential Privacy in Practice:

Expose Your Epsilons! [57]. In the irst, after raising both technical and procedural, i.e., sociotechnical, diiculties
with mathematically prescriptive techniques, the authors loat an Epsilon Registry to ‘encourage better practices
through transparency.’ Although such a registry might very well develop principled defaults and standards in
time, the need for such a process implicitly lays bare our inability to conidently make a privacy enhancing choice
of � for any given use case on its own terms. As for the US Census Bureau, the words of its own researchers
in [69], detailing a use of diferential privacy predating its application to the census itself, are quite illuminating.

The value was set by having the practitioner prepare a set of graphs that showed the trade-of between privacy
loss (�) and accuracy. The group then picked a value of � that allowed for suicient accuracy, then tripled it, so
that the the researchers would be able to make several additional releases with the same data set without having
to return to [the Data Stewardship Executive Policy committee] to get additional privacy-loss budget. The value
of � that was given out was far higher than those envisioned by the creators of diferential privacy.

Finally, in Expose Your Epsilons! the authors revisit the registry, now motivated by a case study on how � has been
set by researchers and engineers in various early deployments of the technology. Although the study includes
examples of survey respondents who, e.g., set their � based on detailed threat modeling, Dwork et al. report
selection methods similar to or even less principled than that of the Census Bureau, noting even that ‘there were
practitioners who admitted the choice of � was completely arbitrary without much consideration.’ The authors
conclude that ‘[i]n spite of the widespread preference of utility over privacy, there [is] no general agreement on
how to choose � .’

In sum, there is a signiicant literature on the theoretical properties of � and its principled choice under ideal
circumstances, i.e., when some 0 < � ≤ 1 maintains suicient utility. However, the theoretical, empirical, and
policy-oriented literature on practically choosing large � is far more limited, making it potentially diicult for
practitioners to make a principled selection wile navigating our six hazards. And in practice, we can see speciic
ways in which the selection of � traverses each of our hazards.

The Six Hazards: #1 & #2. For the irst, it cannot be expected that someone without a mature mathematical
background can read Definitions 4.1 and 4.2 and immediately understand the sociotechnical implications of � .
In their Diferential Privacy: A Primer for a Non-Technical Audience, Wood et al. spend signiicant time introducing
� , explaining its characteristics and implications, and experimentally demonstrating its efect [146]. However,
this discussion focuses on a choice of � ∈ (0, 1] lying within the stiller theoretical waters where its consequences
can be neatly characterized and explained. The authors leave to a footnote important real-world examples ś
including those of Apple and the US Census Bureau ś that use large values of � that fall signiicantly above
that range of values addressed in the article body. As such, in its thoughtful pursuit of a balance between depth
and accessibility the main text does not in the end illuminate the real complexity of the mathematical theory or
available empirical evidence. As for our second hazard, in supporting documentation for a court iling defending
its use of DP, the US Census Bureau highlights that it is ‘mathematically grounded [emphasis added] in a way that
allows statisticians to fully understand the limits of what they can make available and what kind of privacy they

ACM J. Responsib. Comput.



22 • S. Judson and J. Feigenbaum

can provably ofer’ [2]. Although this statement is factually true, it emphasizes the formal nature of DP as the
essential element, while omitting that those limits are a question of social choice. Although that mathematical
grounding of DP allows an understanding, it does not itself provide one. The debate around the census itself
demonstrates how the social elements of that understanding can be highly controversial.

The Six Hazards: #3 & #4. As for the third hazard, data privacy is of immense importance in the information
society [115, 146]. But, DP and its variants ś among our most expressive and powerful techniques for providing
it ś are dependent on careful management of this enigmatic parameterization. Although the simple utility
analysis given previously provides accessible guidance as to why small epsilons are generally acceptable, the
opaque consequences of large epsilons makes reasoning about the sociotechnical efects of their use much more
diicult [57, 59]. An epsilon registry may provide a path towards consensus around choice for deployment, but
the proposal of the registry itself belies our inability to always set � for a given domain on its own terms. For our
fourth hazard, choice of � is unfalsiiable and indeterminate. What constitutes a privacy violation over statistical
data cannot always be well deined, let alone reduced to an � . A sense of privacy is often intangible, may be
communal as well as individual, and may change with time. Some might also consider a given privacy violation
to be outweighed by the public good and so not a failure in a sociotechnical sense. Although we may be able
to show that a given choice of � does not prevent a speciic attack over a speciic data distribution in a speciic
adversarial context, when we strip away those caveats to a broader understanding of privacy violations, our
ability to falsify a choice of � melts away.

The Six Hazards: #5 & #6. For the ifth hazard, as noted in ğ3, work on setting � in a principled way has
lagged behind eforts to extend the theory of diferential privacy. A survey that found hundreds of variants of DP
in the literature covers the selection of � in a short paragraph [48]. For the sixth and inal, the importance of data
privacy has made it a central focus of legislation and regulation of technology [62, 115]. Any attempt to use or
manage DP in this context requires careful consideration of � on which the actual privacy enhancement depends.
Otherwise, these regulatory eforts will be greatly limited in precision, if not in inluence.

A Last Comment. We stress that these hazards are only just that. Their adverse efects are not inevitable.
In both theory and practice ś as has been quite convincingly argued by its advocates in the case of disclosure
avoidance ś diferential privacy can provide accurate mechanisms buttressed by concrete privacy guarantees in
a provable balance all prior approaches to the problem lack. Its deployments for the Census and beyond have
almost certainly led to meaningful privacy gains.

5 Explaining HMAPs

Many of our references originate in an ongoing efort by technically knowledgeable authors to proactively
illuminate the scientiic origins of socially consequential aspects of computation, e.g., [5, 11, 13, 97, 104, 115,
145, 146]. However, we ind that such work is often structured as a primer and tends to be limited in both the
breadth and depth of its scientiic presentation. This limitation is natural and reasonable. An accessible narrative
is essential for a non-technical audience. However, such writing may gloss over important points so as not to
plunge an easy technical account into a morass of detail. Mathematical objects as small and peculiar as HMAPs
may not be given due consideration. Proactive education about the nature of HMAPs requires a companion
format that goes beyond such primers to catalogue ś as thoroughly as is reasonable ś every detail of a technology
that impacts sociotechnical scrutiny.
An encouraging invention in modern computer-science research is the Systematization of Knowledge, or

SoK, which has arisen within the applied-cryptography and information-security communities. Each of [12, 22,
44, 48, 68, 118, 141, 143] is an example on a relevant topic. The goal of these documents is not only to survey
the current state of research within the domain but to relate and organize various designs and deinitions in
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a way that surfaces dependency, inclusion, and variation among them. In other words, to go beyond a simple
survey and characterize how ideas have developed and where they lie in relation to each other. The best SoKs are
structured to allow a reader with neither deep nor broad knowledge of the ield to assess the current state of
afairs and jump to the work most relevant to them. The 2020 SoK: Diferential Privacies by Desfontaines and Pejó
is an excellent example of a SoK with this structural clarity [48]. It provides seven axes along which diferential
privacy deinitions vary, and it charts the relationships among the many proposals along them to allow readers
to understand the surface of the space explored by DP research.
A possible companion to primers for educating about the nature of HMAPs would be a Systematization of

Knowledge for Practitioners, or SoKfP. Such a document would survey and organize (i) the dimensions and
trends in modeling of a given social or physical problem; (ii) their relationships to various published algorithmic
techniques; and (iii) the dependence upon HMAPs of those designs. Unlike a traditional SoK, the purpose of the
document would not be to give a systematic overview of scientiic knowledge. Rather, the goal would be to capture
as thoroughly as possible the mechanisms by which scientists have proposed computation as part of solving
a social or physical problem. An essential element of this narrative is the interpretation of these techniques
under the most inluential empirical, humanist, and social-scientiic perspectives. Organized and written at
an appropriate level of detail (preferably by interdisciplinary scholars or in collaboration with knowledgeable
practitioners), such a document could allow readers to quickly but carefully determine a broad picture of the
technical methods by which computer scientists have proposed solving a problem. This analysis would consider
the repercussions of their possible deployment as evaluated through a broad sociotechnical lens, with a particular
aim towards efective analysis and governance.

Of course, to draft an efective SoKfP, authors must handle the challenge of irst predicting the most relevant
content for the document and then providing an intelligible, digestible, and ultimately useful systematization.
This is a highly nontrivial challenge, because the practitioners who are the intended readers are unlikely to
have equivalent technical background to the authors. It may be easy for a SoKfP to ‘miss the mark’ in either
content or tone, addressing what researches believe practitioners should or would care about, rather than what
they actually do. More generally, responsibility for the exchange of ideas and knowledge necessary for the
efective governance of technology can never be a one-way street; practitioners would probably need to be active
participants in the intellectual and professional environments that produce SoKfPs for the SoKfPs to succeed as
communication tools. The development of interdisciplinary and research-industry-government venues such as
the Fairness, Accountability, and Transparency (FAccT) and the Computer Science & Law (CS&LAW) conferences
and communities ś as well as various supporting workshops and grants such as the NSF Designing Accountable
Software Systems (DASS) program ś may very well provide ideal forums in which to produce the culture and
collaborations needed for SoKfPs and other projects with related end goals.
Consider then, an ideal companion SoKfP to the work of Desfontaines and Pejó on diferential privacy. It

might begin by accounting for how compatible the underlying principle of modeling data privacy through
indistinguishably-based data analysis is with perspectives from law, policy, economics, the social sciences, and
the humanities, as in [115]. Any notable variants of DP ś especially those that respond to concerns of modeling or
HMAPs with the standard deinition ś could then be recounted with discussion as to when one such variant may
be preferred. Careful description of these deinitions in the mode of a primer similar to [146] would then motivate
� and our understanding of its principled choice. This discussion would focus on ś and carefully distinguish
between ś our theoretical, empirical, and social understandings of DP and � . Such a document would be valuable
to an engineer looking for guidance on how to choose � in deployment, a policymaker attempting to integrate DP
into regulatory infrastructure, a lawyer trying to demonstrate harm from a loss of privacy, or a social scientist
trying to interpret data analyzed under it.

SoK: Hate, Harassment, and the Changing Landscape of Online Abuse by Thomas et al. is one of the closest works
we are aware of in form and purpose to our conception of an SoKfP [141]. It combines research from various
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domains and methodologies, including a signiicant survey, to construct a taxonomy of hate and harassment
in online spaces. However, as its focus lies less on the function of internet platform technologies and more on
the social behaviors they enable, HMAPs mostly falls outside its scope. In a quite diferent way A Hierarchy of

Limitations in Machine Learning by Malik [104] furnishes another example of work similar in purpose to our
proposed SoKfPs. It is mostly composed of qualitative methods, although written by a scientiic expert who uses
advanced mathematical tooling at points in the narrative. Malik is intentionally opinionated ‘making [it] a work
ultimately of practice and of a practitioner rather than of analysis.’ Additionally, it covers an immense scope that
naturally limits the technical detail provided. Nonetheless, a synthesis that combined it with a technical SoK
would exemplify the structure we view as potentially conducive to efective and broadly scoped presentation of
urgent topics such as diferential privacy, robust machine learning, or exceptional law-enforcement access.

Despite eforts by technical researchers to proactively produce scholarship helpful to practitioners, there will
also always be a reactive role for computer scientists in responding to scrutiny from without, such as from
journalists or during expert testimony. Every query or line of inquiry practitioners may raise cannot be predicted
ahead of time. Even if scientists could, systematizing it all would be an impractical undertaking. How best to
convey the nuance of HMAPs in an ad hoc manner will likely be speciic to the exact combination of computer-
science discipline and the expertise of the questioner. Nonetheless, our examples and hazards highlight generic
attributes of HMAPs whose regularized treatment may broadly help sociotechnical analysis. A SoKfP provides the
opportunity to organize and present our knowledge in a manner uniquely tailored for use by speciic communities
of practitioners. These generic attributes are far less structured but are at least intuitively understandable.
Most importantly, we consider the following loose classiication of HMAPs. It is intended to give a simple

context to how an object originates and the extent to which computer scientists understand its acceptance or
selection. A heuristic model, assumption, or parameter may be:

(i) formal: the object has a well deined mathematical truth that has not been conclusively established or is being
used in spite of its known falsity; e.g., heuristic models and cryptographic hardness assumptions [73, 74, 109];

(ii) formalśempirical: a formal mathematical argument provides a basis on which to conduct empirical analysis;
e.g., cryptographic key sizes (security parameters) [9, 35, 90], the efect of � on the accuracy of a diferential
privacy mechanism [54, 55, 58, 59, 146], sample complexity [134];

(iii) physical: the object represents a physical process that can be evaluated empirically by engineers or natural
scientists; e.g., assumptions about sensors in cyberphysical systems [139]; choice of � in robust ML when
the modeled process is physical [77, 103, 142];

(iv) socialśempirical: the validity or choice of object is a social question, but it is one that can be placed in empirical
terms by social scientists; e.g., choice of � in robust ML when the modeled process is social [77, 103, 142],
choice of � in diferential privacy following thework quantifying privacy in economic terms [6, 84, 95, 96, 119];
choice of fairness parameters under empirical advisement from social-scientiic research [34, 56, 132]; and

(v) social: the validity or choice of object is a social question that can only be resolved by humanist analysis of
its efects; e.g., all socialśempirical examples when we do not have satisfactory social-scientiic methods.

The distinction between the last two cannot be resolved by computer scientists alone, but how naturally social-
scientiic concepts map onto computational counterparts is an essential question that technical researchers must
help analyze. We note as well a few other dynamics within our classiication. Since real physical objects can
only be evaluated empirically, we do not need to distinguish between physical and physicalśempirical HMAPs.
Of course, physical objects can be formally modeled and that formal model may also be evaluated, in which
case any HMAPs relevant to that model would be formal or formalśempirical as appropriate. For example, the
correctness of physical sensor used on the Boeing 737-MAX aircraft in operation is a physical assumption, but
for an attempt to formally verify the software system that incorporates the readings of the sensor its correctness
would be a formal assumption instead. Separately, we note that a formal model can be of a realized (or just
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realizable) physical system, social system, or of both or of neither. It is the method of reasoning that is relevant to
the classiication, not the system being reasoned about. So the HMAPs used by a formal model of a social system
would be classiied as formal since the mode of reasoning in use is axiomatic, rather than, e.g., statistical (as in
the case of socialśempirical) or humanistic (in the case of social).

To this above classiication we can also add four additional markers. First, whether the object is indeterminate.
Second, whether it is unfalsiiable. Third, whether it receives active research attention and has a robust scientiic
literature. And fourth, whether there exists engineering experience with its development and deployment. For
many practitioners, characterizations of HMAPs ś even without the standardized structure of a SoKfP ś along
these high-level lines may be more helpful than attempts to demonstrate their function through mathematical
descriptions, toy examples, or results from irreconcilable domains.

6 Conclusion

We have discussed how heuristic models, assumptions, and parameters ś the HMAPs ś contribute to the
sociotechnical dimensions of computation. Our thesis is, in essence, that the small and secondary nature of these
objects does not mitigate their hazard to our understanding of how programs and protocols interact with society
and the world. Our proposals in ğ5 may, we hope, stimulate computer scientists to consider how best to address
sociotechnical concerns with HMAPs in a manner accessible to practitioners. Regardless, it is essential that
computer scientists address how to consistently provide the full measure of designs to those engaged in their
principled use within society.
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